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Malacostracan crustaceans capture odours using arrays of chemosensory hairs

(aesthetascs) on antennules. Lobsters and stomatopods have sparse aesthe-

tascs on long antennules that flick with a rapid downstroke when water

flows between the aesthetascs and a slow return stroke when water is trapped

within the array (sniffing). Changes in velocity only cause big differences in

flow through an array in a critical range of hair size, spacing and speed.

Crabs have short antennules bearing dense arrays of flexible aesthetascs that

splay apart during downstroke and clump together during return. Can crabs

sniff, and when during ontogeny are they big enough to sniff? Antennules

of Hemigrapsus oregonensis representing an ontogenetic series from small

juveniles to adults were used to design dynamically scaled physical models.

Particle image velocimetry quantified fluid flow through each array and

showed that even very small crabs capture a new water sample in their

arrays during the downstroke and retain that sample during return stroke.

Comparison with isometrically scaled antennules suggests that reduction in

aesthetasc flexural stiffness during ontogeny, in addition to increase in aesthe-

tasc number and decrease in relative size, maintain sniffing as crabs grow.

Sniffing performance of intermediate-sized juveniles was worse than for

smaller and larger crabs.
1. Introduction
Many animals rely on odours (chemical cues carried in the ambient fluid) as a

source of information throughout their lives. For example, malacostracan crus-

taceans use odours to track and locate food, avoid predation, identify

conspecifics and mediate reproduction [1–11].

In order to use chemical information in the surrounding water or air, animals

must first capture odorant molecules from the ambient fluid [12–14]. During

odour capture, many types of animals move fluid currents through specialized

olfactory organs such as noses or antennae, or move those organs through the

surrounding fluid, thereby transporting odorants close to olfactory receptors.

Malacostracans flick through the water the lateral filaments of their olfactory

antennules (first antennae; figures 1 and 2), which bear arrays of chemosensory

hairs called aesthetascs. It has long been thought that antennule flicking increases

the flow of water near the aesthetascs, thereby bringing odour-bearing water

closer to the receptor cells in those chemosensory hairs [13,15–17].

Previous research has shown that antennule flicking by lobsters and stoma-

topods is ‘sniffing’, i.e. capturing discrete samples of odour-containing fluid

[13,17], although the morphologies and kinematics of these animals’ antennules

differ substantially from those of crabs. A sniff provides a ‘snapshot’ of an olfac-

tory environment that animals can use to resolve spatial and temporal patterns

of chemical signals [18–23].
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Figure 1. (a) Dorsal view of adult (cm ruler) and (b) anterior view of juven-
ile Hemigrapsus oregonensis, white arrows indicate locations of first antennae
or antennules (scale bar 3 mm). (c) Lateral view of antennule during recovery
stroke of flicking, showing aesthetascs clumped together; (d ) lateral view of
antennule during downstroke, showing aesthetascs splayed apart (scale bar
1 mm). (Online version in colour.)
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1.1. Design of olfactory antennules
In malacostracans, the aesthetascs are arranged in rows on

the lateral flagellum of each antennule, with regular spacing

between aesthetascs [24–28]. Aesthetascs are hair-like struc-

tures innervated by dendrites from chemosensory neurons;

the dendrites are surrounded by a thin cuticle, which is per-

meable to odourants and ions [2,29–35]. The well-studied

antennules of lobsters and stomatopods are long with a few

stiff aesthetascs in each row [24,25,35].

By contrast, the antennule morphology of brachyuran crabs

is considerably different. The flagellum of the antennule is

shorter and more compact. Aesthetascs on the antennules of

brachyuran crabs are very long compared with other species

and flexible. The aesthetascs are arranged in dense tooth-

brush-like arrays with very little space between neighbouring

aesthetascs [15,27,30] (figure 2).

Flicking by crab antennules is divided into two strokes:

(i) the rapid downstroke (figure 1d ) and (ii) the slower return

stroke (figure 1c) that moves the antennule in the opposite

direction [17]. During the flick downstroke of a crab antennule,

the aesthetascs are on the upstream side of the antennule and

are oriented roughly parallel to the direction of water motion

relative to the antennule. During the downstroke, the crab’s

long, flexible aesthetascs deflect laterally, or ‘splay’ apart,

thereby increasing the widths of the gaps between the aesthe-

tascs. The direction of the slower return stroke is reversed

and the aesthetascs, now on the downstream side of the

antennule, clump together [17,15,26].

1.2. Fluid dynamics of odour sampling
During flicking, water moves relative to the antennule, while

the layer of water in contact with the antennule and aesthetascs

does not move relative to their surfaces (the ‘no-slip condition’)

[36]. A velocity gradient (boundary layer) develops between
the water moving relative to the aesthetascs and the layer of

attached water. The thickness of each boundary layer around

an aesthetasc relative to the diameter of the aesthetasc depends

on the Reynolds number (Re)

Re ¼ Udr
m

, (1:1)

where U is the fluid velocity relative to the aesthetasc, d is the

aesthetasc diameter, r is the fluid density and m is the dynamic

viscosity of the fluid [36]. Higher velocities (and thus higher

Re’s) during the flick downstroke than during the return

stroke lead to thinner boundary layers relative to aesthetasc

diameter during the downstroke than the return stroke.

Previous research on fluid dynamics of finite arrays of

cylinders describes the relationship between Re, the mor-

phology of hair arrays, and the amount of fluid that flows

through the gaps between hairs in the array [13,37,38]. The

leakiness of an array of cylinders (the volume of fluid that

flows through an array of hairs in a unit of time divided by

the volume of fluid that would flow through the same area

during the same time interval in the absence of hairs)

depends on hair Re. At Re � 1022, leakiness is very low and

the spacing between hairs makes little difference, whereas

at Re � 0.1–1, increases in speed or gap width relative to

hair diameter can lead to big increases in leakiness [37–39].

The Re’s of aesthetascs during antennule flicking by stomato-

pods [24], spiny lobsters [25] and crabs [17,26], fall within the

general range of leakiness sensitivity 0.1 , Re , 1. For stomato-

pods [40] and lobsters [41], the aesthetasc arrays are much leakier

during the rapid downstroke than during the slow return stroke

of flicking antennules. For these antennules, a new sample of

water and the odorant molecules it carries should move into

the aesthetasc array during the downstroke and then should

be trapped between the aesthetascs during the return stroke,

giving odourant molecules in the water sample time to diffuse

to the surfaces of the aesthetascs [41–43]. Thus, each flick of a

lobster or stomatopod antennules is a ‘sniff’.

Crab antennules show this asymmetry in stroke speed, but

their aesthetascs are much more densely packed than other

species. This density is mediated during the downstroke when

aesthetascs splay apart, widening the gaps between aesthetascs

compared to when they clump together during return strokes

[17,26]. Both the asymmetry in speed and changes in gap

width suggest that, for adult animals, there should be greater

leakiness of crab aesthetasc arrays during the downstroke than

during the return stroke [17,26].
1.3. Scaling and the function of antennules
The brachyuran crab, Hemigrapsus oregonensis Dana, undergoes

a dramatic size change during ontogeny, growing from a

juvenile with a carapace width of only 2 mm to an adult with

a carapace width of 35 mm (figure 1). There are large differ-

ences between the sizes of antennules of juveniles and adults,

in addition to the morphological differences observed between

crabs and other species, which can affect Re if antennules and

aesthetascs scale geometrically as the crabs grow. Since the

ability of antennules to alter their leakiness, and thus to sniff,

depends on operating in the critical Re range in which leakiness

varies with velocity and gap width, by current models, juvenile

crabs may simply be too small to sniff. Therefore, we used

H. oregonensis to address the question of whether, when, and

how the ability to sniff arises during the ontogeny of a crab.



(a) (d ) (g)
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Figure 2. Hemigrapsus oregonensis antennules and models. (a – c) Dynamically scaled physical models of ‘splayed’ downstroke. (d – f ) Dynamically scale physical
models of ‘clumped’ recovery stroke. (g – i) Scanning electron micrograph of side view. (a,d,g) Adult of 25-mm carapace width, (b,e,h) juvenile of 12-mm carapace
width and (c,f,i) juvenile of 5-mm carapace width. (Online version in colour.)
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Antennules and aesthetascs of H. oregonensis show allo-

metric scaling as the crabs grow [26]. Aesthetasc diameters are

larger relative to carapace width in juveniles than in adults,

thus the absolute change in aesthetasc size and Re during

ontogeny is small. Aesthetasc diameter grows at less than one-

third of the rate expected if features remained proportionate

through ontogeny.

Changing the gap widths between aesthetascs during

growth could also affect fluid flow within a crab’s aesthetasc

array. The aesthetascs of juvenile H. oregonensis are fewer in

number and deflect further during the downstroke than the

aesthetascs of adults, leading to greater gap widths between

aesthetascs for the juveniles than for the adults [26]. These

changes in the widths of gaps between aesthetascs during

ontogeny can affect the leakiness of the aesthetasc array

during antennule flicking.

Although the negative allometry and relatively wider splay

ratios are highly suggestive, our previous knowledge of the

hydrodynamics of the antennule of a juvenile crustaceans do

not allow us to predict how the function of the toothbrush-

like antennules of crabs would perform and how performance

would vary during ontogeny. Previous studies have investi-

gated sniffing by stomatopods during ontogeny by using only

one juvenile model compared to one adult size [24,40]. This

approach can account for neither the changing gap width

exhibited by crabs during ontogeny nor the potential combined

effect of gap width changes and negative allometry in

intermediate stages.
1.4. Study objectives
The goal of this study was to quantify the hydrodynamics

of flicking by antennules of crabs of different sizes to determine

how sniffing performance changes during ontogeny. We used

particle image velocimetry (PIV) to measure the fluid flow

through aesthetasc arrays of dynamically scaled physical

models of antennules of H. oregonensis during flick down-

strokes and return strokes. The dimensions and Re’s of the

models, which represented antennules of crabs of six different

sizes in an ontogenetic series (carapace widths of 5–25 mm),

were based on morphometric and kinematic data from Wal-

drop [26]. By comparing the volume of fluid entering the

aesthetasc arrays during flick downstrokes and return strokes

by antennules at different ontogenetic stages, we determi-

ned whether they could sniff. The specific questions we

addressed were:

(1) At what size are crabs first able to sniff?

(2) How does sniffing performance vary during crab

ontogeny?

(3) Do the changes in antennule morphology, flexibility and

kinematics that occur during the ontogeny of H. oregonensis
improve sniffing performance compared with antennules

that grow isometrically?

To address this question, we compared our measured

flow through aesthetasc arrays for real crabs with calculated

estimates of flow through the aesthetascs arrays of antennules
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that are geometrically and kinematically similar to the anten-

nules of the largest adults throughout ontogeny, and also

for those that maintain the geometry and kinematics of the

smallest juveniles as they grow.
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2. Material and methods
Water flow through the small, rapidly flicking antennule of a

crab is very difficult to quantify directly, so we measured

water flow through aesthetasc arrays on larger dynamically

scaled physical models of the lateral flagella of antennules of

shore crabs, H. oregonensis, of different sizes that represent an

ontogenetic series from small juveniles to adults.

2.1. Physical models of the antennules
If a model and a real antennule are geometrically similar and

operate at the same Re (equation (1.1)), they are dynamically

similar and the ratios of fluid velocities at comparable positions

around the model and the real antennule are the same

[36,44,45]. We used the mean values of morphometric and kin-

ematic data reported in [26] to design dynamically scaled

physical models of the aesthetasc-bearing lateral filaments of

H. oregonensis of different sizes (carapace widths of 5, 8, 12, 15,

17 and 25 mm; figure 2g–i and table 1). Two models, ‘splayed’

and ‘clumped’, of each ontogenetic size were constructed. The

splayed configuration of aesthetascs during the downstroke

(figure 2a–c) was based on the transverse and longitudinal

splay ratios (distance spanned by the distal tips of the aesthetascs

within the array during the downstroke divided by the width of

the aesthetasc array where the aesthetascs insert into the flagel-

lum) measured by Waldrop [26]. The clumped configuration of

aesthetascs represented the splay ratio of the aesthetasc arrays

during return stroke when the aesthetascs are pushed together

(figure 2d–e) [26].

The models of antennules of small crabs (carapace widths of

5–12 mm) were scaled up by a factor of 175, and models of larger

crabs (carapace widths of 15–25 mm) were scaled up by a factor

of 150. The lower scaling factor for larger crabs was used to mini-

mize the possibility of artefacts due to wall effects, as described

below (equation (2.1)). Aesthetascs of the appropriate diameter

for each model were fabricated out of borosilicate-glass rods

(Kugler-Color Clear borosilicate K-100, Friedrich Farbglashütte

GmbH, Neugablonz, DE) and inserted into a flagellum made of

Sculpey Premo! (Polyform Products Co.) modelling clay. The

models were cured at 808C for 15–30 min, depending on the

thickness of the model’s flagellum.

2.2. Towing apparatus
We towed our physical models at the Re’s of flicking antennules.

Models were towed through mineral oil with a density of

r ¼ 840 g l21 and a dynamic viscosity of m ¼ 0.049+0.002 Pa s

(n ¼ 3) at 258C (all experiments were conducted at this tempera-

ture). The model was immersed in a 250-l tank (100 cm long,

50 cm wide and 50 cm tall; figure 3a). For additional details

about the tank and towing set-up, see [41,39]. The model was

attached to a towing rig via an arm and towed along rails mounted

parallel to the long axis of the tank at Re-appropriate speeds by a

single-axis microstep-positioning system (MC6023, Daedal Inc.,

Irwin, PA, USA) controlled by a computer running Matlab. Wall

effects can influence the fluid flow around an object at low Re,

even if the object is relatively far away from the wall [39]. To esti-

mate when wall effects will influence the flow around a body,

such as an antennule, a rule of thumb can be used

p
L

.
20n

LU
, (2:1)
where p is the distance between the antennule model and the wall,

L is the diameter of antennule model at its widest point, U is the

velocity of the body relative to the stationary wall (also the velocity

of fluid relative to the aesthetascs) and n is the kinematic viscosity

of the fluid, 5.8� 1025 m2 s21 for mineral oil [39]. In our towing

experiments, our smallest models had L ¼ 0.018 cm and the slow-

est velocities occurred at U ¼ 0.0077 m s21, so y � 0.15 m. For our

largest models, L ¼ 0.034 m and were towed at a minimum of U ¼
0.027 m s21, so y � 0.15 m or models were positioned at least

0.20 m from each wall at all times, so wall effects were negligible.
2.3. Particle image velocimetry
The mineral oil was seeded with silver-coated glass spheres 11 mm

in diameter (Potter Industries, Malvern, PA, USA). Although on

average the spheres were neutrally buoyant in mineral oil, some

sank or rose through the oil slowly (vertical speed , 0.2 mm s21),

so they travelled less than 0.5 mm during the short duration of

each towing experiment. We measured horizontal velocities over

a short duration (less than 3 s) so the vertical movements of the par-

ticles did not affect our horizontal velocity measurements. The tank

was stirred prior to the start of each experiment to ensure the glass

spheres were evenly distributed in the mineral oil. We then waited

until all motion of the oil in the tank was damped out before

beginning each tow.

A laser was used to illuminate a single, horizontal plane that

transected each model at its midpoint. The light was produced

by a 200-mW laser of wavelength 650 nm (Evolution Series 200,

Wicked Lasers, Shanghai, PRC) and fitted with a cylindrical

lens that spread the beam into a thin sheet less than 2 mm

thick. The laser was mounted to a rigid plate attached to a cali-

brated microscope stand that could adjust the plate position to

the nearest 0.2 mm.

We made video recordings of the motions of the marker

particles illuminated by the laser during each tow. The glass aesthe-

tascs had the same refractive index as mineral oil, sowe could record

the motion of the marker beads within the aesthetasc array without

distortion. A high-speed camera (Redlake Inc., Tucson, AZ, USA)

was mounted to the towing arm directly above the model and cap-

tured the positions of the illuminated glass spheres relative to the

model in sequential images (480� 420 pixels) taken at 60 frames

per second. The camera recorded images from the horizontal laser

light sheet that captured a cross-sectional view of the model

(figure 3a).

PIV was used to quantify the fluid flow fields around each

dynamically scaled model of an antennule. Sequential pairs of

images were processed with MatPIV v. 1.6.2 for Matlab [46]

using a method developed by Cowen & Monismith [47]. Each

video frame was divided into an array of interrogation windows

(8 � 8 pixels), and a cross-correlational analysis technique calcu-

lated the most probable displacements of particles. These

displacements were used to calculate the local fluid velocity in

each sub-window around the model. Images were only selected

from the middle third of each towing run.

For each towing run, we analysed 60 image pairs and calcu-

lated the mean x and y components of velocity (u and v,

respectively) for each sub-window. We replicated each experimen-

tal condition three times for each of the 12 models (n ¼ 3 replicate

runs). The grand mean of u and v in each sub-window was calcu-

lated using the mean values for u and v from each run, and the

vector sum of each grand mean u and v was used to determine

the mean fluid velocity in each sub-window.

Since the areas of the aesthetasc array during the downstroke

and return stroke are different, we standardized the velocities

within the array (figure 3b) to a rectilinear grid (figure 3c) so

that similar positions within both arrays could be easily com-

pared; S coordinates reflect x-axis positions in the standardized

graphs, and T coordinates reflect y-axis positions. Local velocities
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camera

(a)

(b) (c)

camera’s
view

model
laser

Figure 3. (a) Experimental set-up for PIV. The model was mounted to an
arm connected to a computer-controlled towing rig that moves the model
through a tank containing mineral oil. The long axis of the antennule flagel-
lum was at right angles to the towing direction. Towing velocities produced
the Re’s of the real antennules during their flick downstroke or return stroke.
A camera mounted to the same towing rig travelled with the model, so it
recorded fluid motion relative to the model. The glass aesthetascs (black
lines) were inserted into the model flagellum at an angle of 358 to the
long axis of the flagellum (as shown in figure 2 and diagrammed here).
A sheet of laser light (grey) illuminated one plane in the tank, normal to
the long axis of the flagellum. The circles (dark grey) on the diagram of
the model indicate the sections through the flagellum and the aesthetascs
that were in the plane of the light sheet. Because the aesthetascs inserted
into the flagellum at an angle of 358, each aesthetasc crossed into and out of
the plane of the laser light at a different point, as indicated by the small
circles (dark grey). For simplicity, the diagram shows fewer aesthetascs
than are on the real models. (b) A cross-section of the model as captured
by the camera, which was focused on the plane of the laser sheet. Black
lines indicate the aesthetascs, and the dark grey points show where each
aesthetasc passed through the laser sheet. (c) PIV data within the aesthetasc
array after interpolation and transformation (described in the text). Lines of
the grid superimposed on the model in (b) are now parallel and aesthetasc
cross-sections (dark grey) in (b) are shown at their transformed positions.
(Online version in colour.)
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for positions on the standardized grid were interpolated from

the PIV velocity vector data using a low-pass interpolation

algorithm in Matlab, and the resultant vector for each point

was calculated. The colours in figure 4 represented the mean

magnitudes of those vectors at each point on the standardized

grid (n ¼ 3 replicate runs per model).

We used these standardized grids and velocities to calculate

the mean water speed in each aesthetasc array. For this calcu-

lation, we used the area of the array in which aesthetascs are

present. For each run, we used the magnitudes of the velocity

vectors at the 6100 grid points within the aesthetasc array to cal-

culate the mean speed of water within the array. PIV data for

each carapace width are deposited in Figshare (public data

depository): http://dx.doi.org/10.6084/m9.figshare.928567.

2.4. Calculating refreshment of the water sample in an
aesthetasc array

Since the aesthetascs of the antennule’s array splay apart hapha-

zardly during the downstroke, making a direct calculation of
leakiness is impractical. During each downstroke, the aesthetascs

have the opportunity to take on a new configuration and therefore

change each gap width. For each run, we used the mean, unstan-

dardized velocity vector map to estimate the fraction of the

aesthetasc array that was refreshed with a new water sample

during a downstroke or a return stroke. A sub-window in the

array area was considered refreshed if the parcel of water that

was in that sub-window at the beginning of a downstroke or of a

return stroke had exited the array by the end of that downstroke

or return stroke.

To calculate the fraction of the array that was refreshed, we used

a Lagrangian method of tracking fluid parcels with a forward-Euler

method of estimating parcel trajectories in Matlab [48]. The code

used to run this model can be retrieved from Figshare: http://dx.

doi.org/10.6084/m9.figshare.935514. To track fluid parcels, we cre-

ated an array of evenly spaced points at a constant density (4.5�
104 points per mm) within the array transformed into real-space

coordinates. Assuming the flow was steady and laminar, we

divided the duration of the stroke of real animals reported in [26]

into time steps of 4.14� 1026 s or less in length. Each parcel of

water at each time step was advanced a distance determined by

multiplying its local velocity by the time step. This process was

repeated using the local velocity vector at each new location. At

the end of the stroke, the final positions of each parcel of fluid

were tested for inclusion within the bounds of the aesthetasc

array. Those parcels that moved outside of the array were

summed and divided by the total number of parcels that started

out in the array to calculate the fraction of the array refreshed. We

tested this simulation with a wide variation of time-step lengths

and chose the time-step length based on where the simulation

converged to a single fraction value.
2.5. Statistical analyses
Two-way analysis of variance (ANOVA) and logit transforms were

calculated using the standard statistical package in R [49,50].

Significance was determined at the a ¼ 0.01 level.
3. Results
3.1. Flow through the aesthetasc array as a function of

carapace width
Figure 4 shows examples of maps of velocity vectors that were

measured using PIV for three sets of models (figure 2) that rep-

resent intermediate growth stages of crabs ( juveniles with

carapace widths of 5 mm and 12 mm, and an adult with a car-

apace width of 25 mm). During the downstrokes, all five sets of

models we tested experienced high flow velocities within their

aesthetasc arrays. By contrast, the return strokes for all models

were characterized by very slow velocities within the array,

with two exceptions. First, at the very outside edges of the

arrays where the tips of the aesthetascs were spread farthest

part, fluid velocities were higher than within the rest of the

arrays. Second, there was higher variability in the PIV data

between replicates for the model of the antennule of the juven-

ile with a carapace width of 10 mm (figure 5a).

Mean water speed within the array is graphed as a function

of carapace width in figure 5a for downstrokes and return

strokes. Mean water speeds within the model array ranged

between 0.952 and 3.79 cm s21 for the downstroke condition

and 9.86 � 1023 and 0.352 cm s21 for the return stroke con-

dition. A two-way ANOVA showed that the mean water

speed during the downstroke within the aesthetasc array was

reliably higher than the recovery stroke (F1,24 ¼ 5337, p ,

http://dx.doi.org/10.6084/m9.figshare.928567
http://dx.doi.org/10.6084/m9.figshare.928567
http://dx.doi.org/10.6084/m9.figshare.935514
http://dx.doi.org/10.6084/m9.figshare.935514
http://dx.doi.org/10.6084/m9.figshare.935514
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2.2 � 10216). The downstroke mean water speed also increases

significantly with carapace width (F5,24¼ 245, p , 2.2 �
10216), but the return stroke mean water speed does not

(F5,24 ¼ 251, p , 2.2 � 10216).
3.2. Fraction of aesthetasc array refreshed during a flick
We calculated the fraction of the model aesthetasc array (figure 4)

that was ‘refreshed’ during a flick downstroke or return stroke

(i.e. the area in which water between the aesthetascs was
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washed away and replaced by a new water sample). The frac-

tion of the array refreshed is plotted as a function of crab size

(carapace width) in figure 5b. Fractions refreshed during the

downstrokes ranged from 0.282 to 0.724 and had a mean

value of 0.388. By contrast, during the return strokes, all frac-

tions refreshed ranged from 0.017 to 0.397 and had a mean

value of 0.108.

Because the dependent variable was a ratio, we used a

logit transformation before performing a two-way ANOVA

[50]. The ratios were reliably higher for the downstroke

than the return stroke (F1,24 ¼ 218, p , 1.5 � 10213), but the

fraction of the recovery stroke decreased with carapace

width (F5,24 ¼ 15.3, p ¼ 8.5 � 1027). There was a slight but

significant decrease in the ratio with increasing carapace

width (F5,24 ¼ 218, p ¼ 0.008).
4. Discussion
4.1. Effects of growth on sniffing performance
Malacostracan crustaceans with long antennules and sparse

aesthetasc arrays sniff by flicking their antennules with a

rapid downstroke during which water flows into the spaces

between the chemosensory aesthetascs on the antennule,

and with a slower recovery stroke during which the water

sample is trapped within the aesthetasc array (reviewed by

Koehl [17]). The ability to change the leakiness of the aesthe-

tasc array to sniff is restricted to a certain range of Re’s
(equation (1.1)) in which small changes in velocity, aesthetasc

diameter or width of the gaps between aesthetascs can cause

dramatic alterations in the leakiness of the array [17,37]. In

this study, we found that the antennules of crabs with den-

sely packed arrays of aesthetascs also can sniff, and that the

aesthetascs of juvenile crabs operate at the very low end of

the range of Re’s and gap widths in which sniffing by altering

array leakiness is effective [27].

Although the model antennules of H. oregonensis at all the

sizes we studied are able to capture discrete water samples

with each flick, our PIV data revealed ontogenetic differences
in sniffing performance. For example, compared with the

model antennules of smaller crabs, the model antennules of

large adult crabs are better at retaining water within the

aesthetasc array during flick return strokes. Furthermore,

the small size of a juvenile crab’s aesthetasc array may lead

to more variability between flicks in the amount of fluid

exchanged within the aesthetasc array than occurs for large

aesthetasc arrays on adult antennules. A likely mechanism

for this trend is that small variations in the position of aesthe-

tascs when they splay apart during the downstroke and

clump together during the return stroke should have larger

effects on fluid exchange in small arrays than in large arrays.

As H. oregonensis grows, sniffing performance deteriorates

at intermediate size. We found that aesthetasc arrays on the

model antennules of crabs with a carapace width of 12 mm

experienced lower average velocities during their down-

strokes and higher velocities during their return strokes

than did arrays on both smaller and larger crabs. The result

of these flow patterns is that a greater fraction of the water

sample taken during the downstroke is lost during the

return stroke for the 12 mm crabs than for smaller or larger

crabs (figure 5b). This change in sniffing performance could

occur as a result of two ontogenetic trends reported by Wal-

drop [26]. First, splay ratios have a negative relationship with

carapace width, so the aesthetascs splay apart more during

the downstrokes of small juveniles than of large adults.

Second, the average velocities of the downstroke and return

stroke have a positive relationships with carapace width, so

the antennules of large crabs move more rapidly than those

of small crabs. The body size at which the aesthetasc splay

ratio becomes adult-like is smaller than the body size at

which an antennule acquires the speed and aesthetasc diam-

eter of an adult. Since fluid flow through hair arrays in the Re
range of crab aesthetascs is extremely sensitive to small

changes in inter-hair gap widths and in Re (which depends

on both hair diameter and speed), it is likely that the different

rates at which these features change as crabs grow can cause

the observed decline in sniffing performance of mid-sized

juvenile crabs.
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4.2. Changes in morphology, flexibility and motion
during ontogeny

Our data show that the crab H. oregonensis, is able to sniff at a

wide range of sizes, from tiny juveniles to much larger adults.

Waldrop [26] found that the linear dimensions of antennules of

H. oregonensis increase more slowly than expected relative to

increases in carapace width as these crabs grow [26]. Because

of this allometric growth, small crabs have larger aesthetascs

relative to their body size than do large crabs. Although kin-

ematic data showed that the aesthetascs of juvenile crabs

operate at lower Re’s than do the aesthetascs of adults, the flexi-

bility of the aesthetascs also changes during ontogeny such that

the aesthetascs of small crabs splay apart during the flick

downstroke more than do the aesthetascs of large crabs (i.e.

the gap widths between aesthetascs is greater for small crabs

than for large ones) [26]. This suggests that the net result of

juveniles having big aesthetascs relative to body size, and of

having large differences between the gap widths during the

rapid downstroke and slow recovery stroke of a flick, is that

they can sniff.

To ascertain the importance of the changes in mor-

phology, flexibility and flicking kinematics that occur

during the ontogeny of the antennules of H. oregonensis, we

compared our measured leakiness for real antennules with

that estimated for antennules that grow isometrically and

remain kinematically similar through ontogeny. For isometric

growth, antennules at all body sizes must be geometrically

similar. Thus, they have the same number and arrangement

of aesthetascs at all sizes, and the ratios of linear dimensions

of the antennule (e.g. antennule length, aesthetasc diameter)

to carapace width is a constant. For flicks to be geometrically
similar, then the ratio to carapace width of the distance that

the tip of the antennule moves during a flick is constant for

all body sizes, and the splay ratio is a constant so that the

ratio of gap width to carapace width is the same at all sizes

during both the downstroke and the return stroke. If antennules

of different sizes are kinematically similar, they must not only

have similarity of lengths (geometric similarity), but must

also have similarity of corresponding time intervals. Therefore,

the ratio of the duration of the flick downstroke to the duration

of the return stroke is constant. Since the ratio of carapace width

to the distance the aesthetasc-bearing end of the antennule

moves is also a constant, the ratio of the downstroke velocity

to return stroke velocity is constant for all body sizes.

We considered two cases of isometric growth and kinema-

tically similar flicking: (i) crabs of all sizes have the antennule

morphology and kinematics of the largest adult we studied

(carapace width of 25 mm) and (ii) crabs of all sizes have the

antennule morphology and kinematics of the smallest juvenile

we studied (carapace width of 5 mm). Since the duration of the

downstroke for real crabs is the same for all body sizes [26],

the speeds of the strokes scale linearly with carapace width.

We determined the Re (equation (1.1)) of each isometric anten-

nule using the calculated aesthetasc diameter for L and the

calculated velocity for U. We then used published values for

the leakiness of finite arrays of cylinders with different gap-

to-diameter ratios operating at a range of relevant Re’s to esti-

mate the leakiness of isometric antennules in each of the

cases we considered (figure 6) [37,51]. On a graph of leakiness

as a function of gap-to-diameter at various Re’s, we have

plotted the positions of an ‘isometric adult’ (25 mm carapace

width) that is geometrically and kinematically similar to a

very small juvenile (5 mm carapace width). We have also
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plotted the measured values of the real adult antennules for

comparison. In addition, we have plotted the positions of an

‘isometric juvenile’ (5 mm carapace width) that is geometri-

cally and kinematically similar to an adult (25 mm carapace

width), along with the measured values of the real juvenile

antennules for comparison.

Our estimations of the leakiness of isometric antennules

indicates that the allometric growth and kinematic changes

that occur during the ontogeny of crabs enable them to

sniff at all body sizes. If the crabs maintained the adult anten-

nule morphology and motion throughout ontogeny, then

small juveniles would not be able to sniff because the leaki-

ness of the aesthetasc array would be too low during the

downstroke to permit a new sample of water to be taken

between the aesthetascs. If the crabs maintained the juvenile

morphology and kinematics throughout ontogeny, then the

adult antennule would be very leaky during the return

stroke as well as the downstroke. Such an ‘isometric adult’

could sniff, however, if it paused between flicks so that the

water between the aesthetascs at the end of the return

stroke could be held long enough for the odorant molecules

to diffuse to the aesthetascs.

4.3. Comparison to other crustacean species
Studies of antennule flicking by other malacostracan crus-

taceans have found that antennules on animals of different

sizes can sniff, and that various species maintain the ability

to sniff as they grow via different mechanisms. For example,

a study of adult lobsters, Panulirus argus, showed that they

grow allometrically such that lobsters across a range of body

sizes have aesthetascs of the same diameter and spacing, and

animals of different sizes also flick their antennules at the

same speeds [25]. By contrast, a study comparing one juvenile

size with one adult size of the stomatopod, G. mutatus, showed

that adults flick their antennules at higher velocities (which

increases leakiness of a hair array), but have more closely

spaced aesthetascs (which decreases leakiness) than do smaller

juvenile stomatopods, hence the leakiness of both the down-

stroke and the return stroke of a flick is held constant in spite

of a fourfold difference in body size [40]. Unlike lobsters and

stomatopods, which have stiff aesthetascs that do not deform

during flicking, crabs have flexible aesthetascs that splay

apart during the downstroke and clump together during the

return stroke [15,17,26]. Like stomatopods, H. oregonensis
reduce the gap widths between aesthetascs as they grow, but

via a different mechanism. The stiffness of the aesthetasc cuticle

increases as H. oregonensis grows, so the aesthetascs on anten-

nules of larger crabs do not splay apart as much during the

flick downstroke as do the more flexible hairs on juvenile

antennules [26].

While the earlier studies of size effects on sniffing perform-

ance by lobsters and stomatopods did not cover the full range of

body sizes, our study of H. oregonensis quantified performance

at many stages of ontogeny, from newly metamorphosed juven-

iles to adults. By examining the full range of post-metamorphic

growth of these crabs, we found that the Re’s of both the down-

stroke and return stroke of their antennules change by an order

of magnitude during ontogeny. However, the Re’s at which the

crab aesthetascs operate are all within the range of Re’s at which

leakiness can be altered by small changes in speed, size or hair

spacing [37].

4.4. Odour sampling by juveniles of the environment
Since juveniles of H. oregonensis co-occur with adults, they

share similar predation threats, conspecific interactions and

habitat preference as adults [52]. There is evidence that juven-

ile crabs use chemical cues in order to avoid predation [4] and

late-stage larvae use olfaction to detect settlement cues from

the environment [53]. Thus, odour capture is an important

aspect of crab biology throughout ontogeny. The ontogenetic

changes in antennule morphology, flexibility and kinematics

probably plays an important role in maintaining the ability of

crabs to take discrete samples of their odour environment in

space and time.
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